
Project 6

Matthew Nutt

December 16, 2025

Given a linear system A and a target vector b⃗, my linear solver finds the vector x⃗ that solves the linear
equation Ax⃗ = b⃗. First the QR decomposition of A provides A = QR, such that Q is an orthonormal
matrix and R is a right-triangular matrix. Then QRx⃗ = b⃗, and since Q is orthonormal, Rx⃗ = QTb⃗.
Thanks to the zeroes of R, this equation can then be solved with backsubstitution.

Using modified modules from Projects 3, 4, and 5, my solver implements this algorithm in C++ for HLS onto
an FPGA. As requested, I implemented two versions of my HLS design; one version, solver fixed.cpp,
inputs and outputs fixed-point values. The other version, solver float.cpp, inputs and outputs floating-
point values, though it still uses fixed point internally.

Test results for solver fixed.cpp.

1



Test results for solver float.cpp.

Using standard array partitioning pragmas in the solver function, and incorporating the existing pragmas
of the other modules, the design was optimized for performance and packaged for synthesis. Vitis reports a
23 µs latency estimation on both designs.

Timing and resource utilization post-synthesis for solver fixed.cpp.

2



Timing and resource utilization post-synthesis for solver float.cpp.

The schedule view of each design indicates that division operations take up most of the clock cycles during
computation.

Timing schedule for solver fixed.cpp.

Timing schedule for solver float.cpp.

3



In Vivado, a block diagram of each design was assembled, and the final synthesis/implementation was
completed.

Results from the Vivado implementation process of solver fixed.cpp.

4



Results from the Vivado implementation process of solver float.cpp.

5



Taking the resulting hardware platform into Vitis, two application files were created, main fixed.cpp and
main float.cpp, built for their corresponding design version. Both applications verify the functionality of
the HLS design on the PL of the devboard with three different linear systems. They also include software
implementations of the same linear solver algorithm used in HLS, albeit substituting trigonometric functions
in place of a CORDIC module for vector rotations.

Serial monitor output for all three linear systems
tested on the fixed-point version of the project.

Serial monitor output for all three linear systems
tested on the floating-point version of the project.

As the results indicate, the fixed-point version of the software suffers tremendous delays compared to its
matching PL. This is likely due to the lack of optimization for the fixed-point datatype; the PL is synthesized
to directly process the datatype, but the software likely performs inefficient conversions in order to carry out
operations. One remedy I learned from another student was to implement fixed-point versions of common
operations like multiplication and division, but out of the box, the software performs very poorly with
fixed-point.

6



In stark contrast, the floating-point version of the software is several orders of magnitude faster, even
outpacing the PL. With native operations in floating point, as well as access to libraries such as cmath,
this version suits the software much better than fixed-point. The PL also suffered some additional delay
compared to the pure fixed-point version, since it first has to convert between the two datatypes before it
can complete its algorithm.

Test # Fixed-Point HW Fixed-Point SW Floating-Point HW Floating-Point SW

#1 877 cycles 39428 cycles 1001 cycles 380 cycles
#2 849 cycles 37539 cycles 958 cycles 232 cycles
#3 850 cycles 37563 cycles 956 cycles 232 cycles

Total 2576 cycles 114530 cycles 2915 cycles 844 cycles

7


