Project 6

Matthew Nutt

December 16, 2025

Given a linear system A and a target vector B, my linear solver finds the vector X that solves the linear
equation AX = b. First the QR decomposition of A provides A = QR, such that Q is an orthonormal
matrix and R is a right-triangular matrix. Then QRX = 5, and since Q is orthonormal, RX = QTE;
Thanks to the zeroes of R, this equation can then be solved with backsubstitution.

Using modified modules from Projects 3, 4, and 5, my solver implements this algorithm in C++ for HLS onto
an FPGA. As requested, I implemented two versions of my HLS design; one version, solver_fixed.cpp,
inputs and outputs fixed-point values. The other version, solver_float.cpp, inputs and outputs floating-
point values, though it still uses fixed point internally.

Running Test #1 =

A
=
[-
=
=

= [@.
Complete ==

Test results for solver_fixed.cpp.

Running

Difference
Running Te
,{I‘

=
=
[-
=
]
]
X
]

Difference
Running Te

=

Complete

Test results for solver_float.cpp.

Using standard array partitioning pragmas in the solver function, and incorporating the existing pragmas
of the other modules, the design was optimized for performance and packaged for synthesis. Vitis reports a
23 s latency estimation on both designs.

~ Timing Estimate
@
TARGET ESTIMATED UNCERTAINTY

10.00ns 7993 ns 200ns

~ Performance & Resource Estimates

A

X = 1 9 Ya h'g E]Modu\es E]Lc-ups E]H'\deemptycolumns

MODULES & LOOPS LATENCYINS) | [lON INTERVAL | TRIP COUNT PIPELINED STRUCTURE BRAM L Wi uRAM

~ @ solver_fixed (2} 2301E4 2302 no function 5738 10,285

> ®ard (3) 2.006E4 1 no function 2033 6081

> @ matrbanul (1) 60.000 loop auto-rew function 107 741

Timing and resource utilization post-synthesis for solver_fixed.cpp.

~ Timing Estimate
@

TARGET ESTIMATED UNCERTAINTY

10.00ns 7.993ns 200ns

~~ Performance & Resource Estimates

A ¥ o}

¥ [“IModules [Jloops [/]Hide empty columns

wr

MoDULES & LooPS renos TESTON s | twecount peemep | steucoRe

oat (4) 2321E4 no function 7 19,001
ver_float_Pipeline_input_Loop (1) 70.000 loop auto-rew function
qrd (3) 2.006E4 no function
matrixmul (1) 60.000 loop auto-rew function

solver_float_Pipeline_Output_Loop (1) 60.000

loop auto-rew function

Timing and resource utilization post-synthesis for solver_float.cpp.

The schedule view of each design indicates that division operations take up most of the clock cycles during
computation.

qrd

matrixmul

Timing schedule for solver_fixed.cpp.

matrixmul

sdiv_Ind4

mul_Ind6

mul_in46_1

div_Ind7

Timing schedule for solver_float.cpp.

In Vivado, a block diagram of each design was assembled, and the final synthesis/implementation was
completed.

solver_fixed_0

s_axi_HLS_SOLVER BUS
i ap_clk
ap_rstn

Solver_fixed (Pre-Production)

interrupt %

axi_sme
4 s00.AXI lyl
ack .i. MOO_AXI 15

rst_ps8_0_99M t—a aresetn. mlog

2zynq_ultra_ps_e_0

T M_AXI_HPMO_LPD i slowest_sync_ch mb_reset AXT SmartConnect
O LT pl_resetn0 ext_reset in bus_struct_reset(0:0]
plps_irqQ[0:0]
® pl_cko au_resel_in peripheral_reset(0:0]
+ mb_debug_sys_rst interconnect_aresetn]0:0]
UltraSCALE otz Cepeal e
Zynq UltraScale+ MPSoC

Processor System Reset

Resource Utilization Available Utilization %
LUT 5391 70560 7.64
LUTRAM 9 28800 0.03
FF 4173 141120 296
BRAM 4 216 1.85
DsP 13 360 361
Setup Hold Pulse Width
Worst Megative Slack (WNS). 2719ns Worst Hold Slack (WHS): 0.014 ns ‘Worst Pulse Width Slack (WPWS3): 3500 ns
Total Negative Slack (THNS): 0.000ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS). 0.000 ns
Mumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 0
Total Number of Endpoints: 9455 Total Number of Endpoints: 9455 Total Number of Endpoints: 4206

All user specified timing constraints are met.

Results from the Vivado implementation process of solver_fixed.cpp.

solver_float_0

P+ s_ax_HLS_SOLVER BUS
7 ap_ck
ap_rstn

Solver_float (Pre-P roduction)

interrupt };

2zynq_ultra_ps_e_0

maxihpmo_lpd_aclk
pl_ps_irg0[0:0]

ZYNQ

UltraSCALE*

M_AXI_HPMO_LPD - {ffmed

pl_resetn0
pLclko

Zynq UltraScale+ MPS0C

rst_ps8_0_99M

‘slowest_sync_clk mb_reset
bus._struct_reset(0:0]
peripheral_reset[0:0]

interconnect_aresetn|0:0]

peripheral_aresetn[0:0]

ext_reset_in
aux_reset_in
mb_debug_sys_rst
dem_locked

Processor System Resel

axi_smc
i+ sooma Wsm
ack IYI MOO_AXI + [

t—q aresetn

AXI SmartConnect

Resource Utilization Available Utilization %
LUT a706 70560 12.34
LUTRAM 9 28800 0.03
FF 5986 141120 424
BRAM 4 216 1.85
DsP 13 360 361
Setup Hold Pulse Width
Worst Negative Slack (WNS). 2667 ns Worst Hold Slack (WHS): 0.012 ns Worst Pulse Width Slack (WPWS): 3.500ns
Total Megative Slack (TNS): 0.000 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS). 0.000ns
Mumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 0
Total Mumber of Endpoints: 13158 Total Mumber of Endpoints: 13158 Total Mumber of Endpoints: G017

All user specified timing constraints are met.

Results from the Vivado implementation process of solver_float.cpp.

Taking the resulting hardware platform into Vitis, two application files were created, main fixed.cpp and
main_float.cpp, built for their corresponding design version. Both applications verify the functionality of
the HLS design on the PL of the devboard with three different linear systems. They also include software
implementations of the same linear solver algorithm used in HLS, albeit substituting trigonometric functions
in place of a CORDIC module for vector rotations.

Total tim
Cycle count second
s n for h:

Cycle counts p
Time in second

in seconds
= Speedup
Running

]
t} =
HW R

X =

A
L
C
L
L
]
b

for hardy
second
for har

seconds
= Speedup of har
Running T 3

L

Running Te

=

O
{ LT O I

Cycle counts per
Ti in second

in seconds f : 1 89

Speedup of har] e 44.1918
Complete =
Serial monitor output for all three linear systems Serial monitor output for all three linear systems
tested on the fixed-point version of the project. tested on the floating-point version of the project.

As the results indicate, the fixed-point version of the software suffers tremendous delays compared to its
matching PL. This is likely due to the lack of optimization for the fixed-point datatype; the PL is synthesized
to directly process the datatype, but the software likely performs inefficient conversions in order to carry out
operations. One remedy I learned from another student was to implement fixed-point versions of common
operations like multiplication and division, but out of the box, the software performs very poorly with
fixed-point.

In stark contrast, the floating-point version of the software is several orders of magnitude faster, even
outpacing the PL. With native operations in floating point, as well as access to libraries such as cmath,
this version suits the software much better than fixed-point. The PL also suffered some additional delay
compared to the pure fixed-point version, since it first has to convert between the two datatypes before it
can complete its algorithm.

’ Test # H Fixed-Point HW | Fixed-Point SW H Floating-Point HW | Floating-Point SW ‘

#1 877 cycles 39428 cycles 1001 cycles 380 cycles
#2 849 cycles 37539 cycles 958 cycles 232 cycles
#3 850 cycles 37563 cycles 956 cycles 232 cycles
] Total H 2576 cycles \ 114530 cycles H 2915 cycles \ 844 cycles

