
ELEC 422, RICE UNIVERSITY, SPRING 2025 1

Snake Game Implemented in
CMOS Static Logic

Snake 8x8: Aden Briano, Matthew Nutt, Renee Wrysinski

I. INTRODUCTION

This is a basic version of the classic Snake game coded
in Verilog, synthesized into gate-level logic, and implemented
in a physical VLSI layout. The final chip requires a dual-
phase clock, reset signal, and directional signals as inputs, and
outputs control signals for display multiplexing on an eight-by-
eight LED array. For the sake of concise simulations, only one
cycle of multiplexing is used (i.e., eight clock cycles). Game
updates occur after every multiplexing phase, so if this chip
were to be fabricated and run on a multi-megahertz clock, it
is imperative to first adjust the number of multiplexing cycles
so that the game updates occur at a more reasonable rate.

Dual-phase clocking is used for system synchronization.
Two clock signals, clka and clkb, are patterned such that
one signal completes a rising and falling cycle while the
other remains low, then vice versa. All flip-flops update on
the falling edge of the clocks, but input registers holding
intermediate values are updated on the falling edge of clka,
whereas output registers are updated on the falling edge of
clkb. This way, timing discipline can be maintained between
all the modules of the project.

This project uses the standard cell library from Oklahoma
State University for the AMI 0.5 µm process.

GitHub Repository: https://github.com/MatthewNutt5/snake

II. VERILOG MODULES

A. Controller Module

The Controller Module manages the synchronization be-
tween modules for the game. It contains three sub-FSMs:

1) The game FSM, showing whether the game is ready,
started, or ended,

2) The direction FSM, keeping track of which direction the
snake is moving, and

3) The execution FSM, synchronizing the phases of game
updates and display multiplexing.

The inputs to the module are:
• Global clock and restart signals,
• Game update signals from the logic datapath, and
• A one-hot direction signal.

The outputs from the module are:
• Each sub-FSM’s current state,
• Game state and direction signals to the logic datapath,

and
• Control signals for a multiplexed 8x8 LED display.
Fig. 1 shows state transition diagrams for each sub-FSM

in the module. Internally, the module stores each state and

Fig. 1. State transition diagrams of each FSM in the Controller Module.

iterates through the state transitions according to the module’s
inputs.

B. Logic Datapath

The Logic Datapath keeps track of game data, facilitates
game updates, and produces signals for displaying the game
board.
The inputs to the module are:

• Global clock and restart signals,
• Game state and direction signals from the controller

module, and
• The current random number from the PRNG module.

The outputs from the module are:
• Game update signals to the controller module,
• The current state of the game board expressed as an array

of LEDs, and



ELEC 422, RICE UNIVERSITY, SPRING 2025 2

• A signal to the PRNG for requesting a new random
number.

The internal module storage includes:
• A 64-long, 6-wide shift register holding the position of

each snake body piece,
• 6-bit registers holding the position of the apple and the

current snake length, and
• A 64-bit register representing the display array.
The module performs the following calculations each time

a game update is requested:
1) Calculate the new head position based on the current

position and the directional input.
2) Iterate through the body-location shift register starting

at the tail piece, shifting each register and checking for
collisions with the new head position.

a) If a collision is detected, send the controller a
signal indicating that the game has ended.

3) Check for a collision between the current apple position
and the new head position.

a) If a collision is detected, iterate the snake’s length
and request a new apple position.

4) Update the apple position with the current random
number (will not change if apple hasn’t been eaten).

5) Update the display array with the new data from the
game update.

C. PRNG Datapath

The PRNG Datapath manages an LFSR-based random num-
ber generator.
The inputs to the module are:

• Global clock and restart signals, and
• The request signal from the logic module.

The sole output is the current random number.
Internally, the module stores the random number in a 6-bit

shift register, and each time an update is requested, updates the
register with the polynomial x6 + x5 + 1 in order to generate
numbers with the maximum-possible period.

D. Top Module

The Top Module integrates the above modules into one
complete unit. It distributes the global inputs to each module,
and interlinks the internal signals between the modules.
The inputs to the module are:

• Dual-phase clocks generated by an external oscillator,
• A restart signal provided by an external button, and
• A one-hot direction signal also generated by buttons.

The outputs from the module are:
• The multiplexed display signals, and
• All internal signals between the modules.
The latter is not necessary for the function of the game,

but is useful for debugging with testbenches. The structure of
the top module, i.e. the connections between the modules, are
drawn as a block diagram in Fig. 2.

Fig. 2. Block diagram of top module.

III. VERILOG TESTBENCHES
(PRE-SYNTHESIS)

A. Controller Module

Before the design was synthesized, the Verilog files were
verified with a series of testbenches to ensure they functioned
as expected. Each module had its own testbench checking its
basic functions, and the testbench for the top module was used
to test the behavior of the overall game.

The Questa simulation result of the Controller module
testing is shown in Fig. 3. Significant events are labeled; the
following are the events that occur at each label:

• t1: Restart signal goes high, resetting all registers. With
no new inputs, the controller repeatedly loops through the
multiplexing cycle to display the initial conditions. The
game is not yet started (out game state = 0).

• t2: A new direction is input.
• t3: The controller responds to the new direction, updating

the direction state and game state to indicate that the game
has started (out direction state = 0, out game state = 1).
In a few cycles, the controller will tell the logic module
to update the game, and multiplexing will continue once
the logic module has finished.

• t4: A new direction is input.
• t5: At the end of a game update, the logic module

indicates a collision. The controller updates the game
state to the game end condition out game state = 2, and
will send a signal back to the logic module to blink the
snake head’s position.

B. Logic Module

The Questa simulation result of the Logic module testing
is shown in Fig. 4. Note that the random numbers are not
actually random; they were fabricated to minimize the length
of the simulation. Significant events are labeled; the following
are the events that occur at each label:

• t1: Restart signal goes high, then low. (out random num
= 011101). This is the first location of the apple.

• t2: Snake begins to move right (out direction state = 3)
towards location of first apple.

• t3: Snake eats first apple. New random number is re-
quested (out request rand goes high). New apple spawns



ELEC 422, RICE UNIVERSITY, SPRING 2025 3

Fig. 3. Pre-synthesis Questa simulation of Controller module.

Fig. 4. Pre-synthesis Questa simulation of Logic module.

(out random num = 101110). Snake continues to move
right.

• t4: Snake eats second apple. New random number is re-
quested (out request rand goes high). New apple spawns
(out random num = 100110).

• t5: Snake begins to move up (out direction state = 0)
towards location of third apple.

• t6: Snake eats third apple. New random number is re-
quested (out request rand goes high). New apple spawns
(out random num = 100101).

• t7: Snake begins to move left.
• t8: Snake eats fourth apple. New random number is re-

quested (out request rand goes high). New apple spawns
(out random num = 000000). The snake is readyv to kill
itself.

• t9: Snake begins moving down and eventually kills itself
and signals game end(out to controller = 3).

C. PRNG Module
The Questa simulation result of the PRNG module testing is

shown in Fig. 5. Significant events are labeled; the following
are the events that occur at each label:

• t1: Restart signal goes low (out random num = 011101).
This is the first location of the apple and the seed for the
PRNG.

• t2: Snake eats first apple. New random number is re-
quested (in request rand goes high).

• t3: New apple spawns (out random num = 101110).
• t4: Snake eats second apple. New random number is

requested (in request rand goes high).
• t5: New apple spawns (out random num = 110111).
• t6: Snake eats third apple. New random number is re-

quested (in request rand goes high).
• t7: New apple spawns (out random num = 011011).

D. Top Module

The Questa simulation result of the Top module testing is
shown in Fig. 6. Significant events are labeled; the following
are the events that occur at each label:

• t0: Restart signal goes high, resetting all registers. Direc-
tional input starts the game (out game state = 1). Snake
begins to move right (out direction state = 3) towards
location of first apple.

• t1: Snake eats first apple. New random number is re-
quested (out request rand goes high), and next apple
appears at location determined by random number . Snake
is now 2 pixels long.

• t2: Snake begins to move up (out direction state = 0).
• t3: Snake begins to move right.
• t4: Snake eats next apple. New random number is re-

quested, and next apple appears at location determined
by random number. Snake is now 3 pixels long.

• t5: Snake begins to move up.
• t6: Snake begins to move right.
• t7: Snake eats next apple. New random number is re-

quested, and next apple appears at location determined
by random number. Snake is now 4 pixels long.

• t8: Snake begins to move down (out direction state = 1).
• t9: Snake begins to move left (out direction state = 2).
• t10: Snake eats next apple. New random number is

requested, and next apple appears at location determined
by random number. Snake is now 5 pixels long.

• t11: Snake begins to move down.
• t12: Snake begins to move right.
• t13: Snake begins to move up towards its own tail.
• t14: Snake collides with its tail, and game ends

(out game state = 2).



ELEC 422, RICE UNIVERSITY, SPRING 2025 4

Fig. 5. Pre-synthesis Questa simulation of PRNG module.

Fig. 6. Pre-synthesis Questa simulation of Top module.

IV. SYNTHESIS

The Verilog description was synthesized with Design Com-
piler, set to a target frequency of 20MHz. This produced a
design with a total of 3435 cells and an estimated power
consumption of 3.8514mW.

V. VERILOG TESTBENCHES
(POST-SYNTHESIS)

A. Controller Module

After synthesis by Design Compiler was performed, the
Controller module was once again simulated in Questa with
the testbench described in Subsection III-A. Figure 19 (con-
tained in XI. Appendix) shows the annotated simulation re-
sults. The simulation results were the same as the Questa
simulation performed before synthesis, confirming that no
functional issues were created by synthesis.

B. Logic Module

After synthesis by Design Compiler was performed, the
Logic module was once again simulated in Questa with the
testbench described in Subsection III-B. Figure 20 (contained
in XI. Appendix) shows the annotated simulation results. The
simulation results were the same as the Questa simulation
performed before synthesis, confirming that no functional
issues were created by synthesis.

C. PRNG Module

After synthesis by Design Compiler was performed, the
PRNG module was once again simulated in Questa with the
testbench described in Subsection III-C. Figure 21 (contained
in XI. Appendix) shows the annotated simulation results. The
simulation results were the same as the Questa simulation
performed before synthesis, confirming that no functional
issues were created by synthesis.

D. Top Module

After synthesis by Design Compiler was performed, the Top
module was once again simulated in Questa with the testbench
described in Subsection III-D. Figure 7 shows the annotated
simulation results. The simulation results were the same as the
Questa simulation performed before synthesis, confirming that
no functional issues were created by synthesis.

VI. CHIP LAYOUT

Following post-synthesis verification, the design was ready
to be placed and routed through Innovus. However, the initial
core size generated by the standard density setting of 0.6 was
too large to fit within the desired 64-pin padframe housing, as
can be seen in Fig. 8.

Fig. 8. Original size of core as described by Magic.

To decrease the size of the design, the density target in the
configuration file, which can be seen in Fig. 9, was altered to
0.75. This increases the density of placed cells and the routing
between them.

Fig. 9. Density target in configuration file.

The finished place-and-route from Innovus can be seen in
Fig. 10. There are no shorts or overlaps between cells, which
are issues that might arise when increasing the target density
to values too close to 1.



ELEC 422, RICE UNIVERSITY, SPRING 2025 5

Fig. 7. Post-synthesis Questa simulation of Top module.

Fig. 10. Innovus place-and-route of core.

Finally, the layout file created by Innovus was ready to be
read into Magic. The finalized core and size can be seen in
Fig. 11. The core is now ready for testing, which is covered
in the following section.

VII. CORE TESTBENCH

After chip layout, Magic generated a behavioral file for
simulating the design. A testbench file for use in IRSIM was
created from the Verilog testbench with the help of a custom
Python script that converts text from a Verilog testbench to the
format of an IRSIM test vector file, so the exact same sequence
of events was tested. Fig. 12 shows the annotated IRSIM result
of the simulation of the behavior of the core when provided
with the inputs described in the core testbench. The labels
correspond to the same events described in Section III-D.

VIII. PADFRAME INTEGRATION

After successfully importing the core into Magic and testing
to ensure all functionality is as expected, the core was fully
prepared for injection into a custom 64-pin padframe. It is
important to note the exact configuration of the bidirectional
pad that was used in the construction of the 64-pin padframe,
which can be seen in Fig. 13.

The pad seen in Fig. 13 demonstrates the behavior seen in
Fig. 14.

Fig. 11. Finalized core in Magic.

In other words, when OEN is HIGH, DO is written to PAD
at the top of the bidirectional pad, and when OEN is low, PAD
is written to DI. Also in the 64-pin padframe are VDD and
GND pads, whose purpose is to take external VDD or GND
and provide it to the core VDD and GND rails, as well as set
all OEN flags accordingly. The VDD pad can be seen in Fig.
15. The GND pad is constructed the same.

As mentioned above, inputs to the top module are in the
form of a two-phase clocking discipline, clka and clkb, four
buttons for the direction input from the user, and one button for
the restart input from the user. The only outputs from the top
module are 8-row cathode and 8-column anode signals, which
conduct a typical LED multiplexing outline. After inserting the
core into the 64-pin padframe, which can comfortably house
a core up to 1400x1400 microns, wiring all relevant pads to
the inputs and outputs of the core accordingly, and setting all
unused pads to input pads, the complete design follows.
The integrated core with pin mapping can be seen in Fig. 17.

I/O Pin and Signal Description

• clkb is connected to input pin 31.



ELEC 422, RICE UNIVERSITY, SPRING 2025 6

Fig. 12. IRSIM simulation of the core design.

Fig. 13. Bidirectional Pad provided by OSU.

OEN PAD DI DO
0 1 1 X
0 0 0 X
1 1 X 1
1 0 X 0

Fig. 14. Bidirectional Pad Behavior.

• The restart signal is connected to input pin 27.
• The UP direction signal is connected to input pin 25.
• The DOWN direction signal is connected to input pin 24.
• The LEFT direction signal is connected to input pin 23.
• The RIGHT direction signal is connected to input pin 22.
• clka is connected to input pin 21.
• row cathode7 is connected to output pin 20.

Fig. 15. Vdd pad provided by OSU.

• row cathode6 is connected to output pin 19.
• row cathode3 is connected to output pin 18.
• row cathode5 is connected to output pin 17.
• row cathode1 is connected to output pin 16.
• row cathode2 is connected to output pin 14.
• row cathode4 is connected to output pin 13.
• row cathode0 is connected to output pin 12.
• column anode7 is connected to output pin 11.
• column anode6 is connected to output pin 10.
• column anode1 is connected to output pin 9.
• column anode0 is connected to output pin 7.
• column anode5 is connected to output pin 6.
• column anode3 is connected to output pin 5.
• column anode2 is connected to output pin 4.



ELEC 422, RICE UNIVERSITY, SPRING 2025 7

Fig. 16. Fully integrated core with padframe.

Fig. 17. 64-Pin PadFrame with pinmap (unused pins are configured as inputs).

• column anode4 is connected to output pin 3.
• GND is connected to input pin 32.
• VDD is connected to input pin 15.
To verify the integration of the core into the 64-pin pad-

frame, testing of all functionality, similar to what was done
before, is necessary. This will be the subject of the next and
final section.

IX. PADFRAME TESTBENCH

When testing the design, the functionality under test was
the following:

• Change in direction upon input from the user,
• Successful growth of snake’s body after consuming an

apple, and

Part Quantity
Snake ASIC 1
Green LED 64
Pushbutton 5
3.3V Battery 1

Fig. 18. Required parts for testing chip.

• Snake death after collision with the body.
Since the design had already been tested during core testing

(see VII. Core Testbench), all that was necessary was to
replicate the testbench written earlier for the integrated core.
The main difference, however, is that in testing the integrated
core, internal signals were not connected to the padframe, and
thus only look at the specified inputs and outputs in the IRSIM
simulations. The testbench only considers inputs available to
the user and outputs necessary to conduct the LED array
visible to the user. 1385 ns of the beginning and end of the
IRSIM simulation can be seen in Fig. 22 (contained in XI.
Appendix).

The entire IRSIM simulation is not provided; however,
enough is shown to provide the reader with a clear under-
standing of how the signal waveforms correspond to a physical
manifestation of the game state on the LED array. In the
first photo, a RIGHT direction input can be viewed. In the
second image, the 3rd bit, or row, of row cathode, which
follows a one-cold encoding, is lit on the 3rd and 5th columns.
These lights represent the snake and the apple. As the display
continues to iterate through the rows, note that no other LEDs
are on. In the next display cycle, in the 3rd row, the 4th and
5th columns are now lit, reflecting the right direction input
from the user. In the 3rd photo, the user inputs UP, which will
be reflected in the next display cycle. In the 3rd row, the 4th
and 5th columns are lit. This corresponds to the body of the
snake, whose head is now in the position of the previous apple
after a successful consumption. Also, in the 5th row, the 6th
column is lit. This LED corresponds to the new spawn location
of the apple that was just consumed. The entire journey of the
snake can be seen in Fig. 23 (contained in XI. Appendix).

The IRSIM outputs successfully demonstrate all of the func-
tionality desired in the snake game. The simulation accurately
reflects the movement of the snake, apple consumption, apple
spawning, and death upon collision with the body.

X. TESTING STRATEGY

In order to test a fabricated ASIC of this design, it would be
necessary to connect it to a multiplexed 8x8 LED grid, 5 push
buttons, and a 3.3V battery (or other 3.3V power supply)
as shown in Fig. 24 (contained in XI. Appendix). The parts
required for this design are listed in Fig. 18.

XI. APPENDIX



ELEC 422, RICE UNIVERSITY, SPRING 2025 8

Fig. 19. Post-synthesis Questa simulation of Controller module.

Fig. 20. Post-synthesis Questa simulation of Logic module.

Fig. 21. Post-synthesis Questa simulation of PRNG module.

Fig. 22. IRSIM simulation of the design, from the padframe.



ELEC 422, RICE UNIVERSITY, SPRING 2025 9

Fig. 23. Visualization of IRSIM Output as it would appear on an 8x8 LED array.



ELEC 422, RICE UNIVERSITY, SPRING 2025 10

Fig. 24. Schematic of circuit required to test Snake ASIC.


